90 research outputs found

    Numerically erasure-robust frames

    Get PDF
    Given a channel with additive noise and adversarial erasures, the task is to design a frame that allows for stable signal reconstruction from transmitted frame coefficients. To meet these specifications, we introduce numerically erasure-robust frames. We first consider a variety of constructions, including random frames, equiangular tight frames and group frames. Later, we show that arbitrarily large erasure rates necessarily induce numerical instability in signal reconstruction. We conclude with a few observations, including some implications for maximal equiangular tight frames and sparse frames.Comment: 15 page

    Harmonic equiangular tight frames comprised of regular simplices

    Get PDF
    An equiangular tight frame (ETF) is a sequence of unit-norm vectors in a Euclidean space whose coherence achieves equality in the Welch bound, and thus yields an optimal packing in a projective space. A regular simplex is a simple type of ETF in which the number of vectors is one more than the dimension of the underlying space. More sophisticated examples include harmonic ETFs which equate to difference sets in finite abelian groups. Recently, it was shown that some harmonic ETFs are comprised of regular simplices. In this paper, we continue the investigation into these special harmonic ETFs. We begin by characterizing when the subspaces that are spanned by the ETF's regular simplices form an equi-isoclinic tight fusion frame (EITFF), which is a type of optimal packing in a Grassmannian space. We shall see that every difference set that produces an EITFF in this way also yields a complex circulant conference matrix. Next, we consider a subclass of these difference sets that can be factored in terms of a smaller difference set and a relative difference set. It turns out that these relative difference sets lend themselves to a second, related and yet distinct, construction of complex circulant conference matrices. Finally, we provide explicit infinite families of ETFs to which this theory applies

    Polyphase equiangular tight frames

    Get PDF
    An equiangular tight frame (ETF) is a type of optimal packing of lines in a finite-dimensional Hilbert space. ETFs arise in various applications, such as waveform design for wireless communication, compressed sensing, quantum information theory and algebraic coding theory. In a recent paper, signature matrices of ETFs were constructed from abelian distance regular covers of complete graphs. We extend this work, constructing a new infinite family of complex ETFs. Our approach involves designing matrices whose entries are polynomials over a finite abelian group, namely polyphase matrices of finite filter banks

    Filter Bank Fusion Frames

    Get PDF
    In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using oversampled filter banks. In this work, we first provide polyphase domain characterizations of filter bank fusion frames. We then use these characterizations to construct filter bank fusion frame versions of discrete wavelet and Gabor transforms, emphasizing those specific finite impulse response filters whose frequency responses are well-behaved.Comment: keywords: filter banks, frames, tight, fusion, erasures, polyphas

    Frame completions for optimally robust reconstruction

    Full text link
    In information fusion, one is often confronted with the following problem: given a preexisting set of measurements about an unknown quantity, what new measurements should one collect in order to accomplish a given fusion task with optimal accuracy and efficiency. We illustrate just how difficult this problem can become by considering one of its more simple forms: when the unknown quantity is a vector in a Hilbert space, the task itself is vector reconstruction, and the measurements are linear functionals, that is, inner products of the unknown vector with given measurement vectors. Such reconstruction problems are the subject of frame theory. Here, we can measure the quality of a given frame by the average reconstruction error induced by noisy measurements; the mean square error is known to be the trace of the inverse of the frame operator. We discuss preliminary results which help indicate how to add new vectors to a given frame in order to reduce this mean square error as much as possible

    Equiangular tight frames from group divisible designs

    Get PDF
    An equiangular tight frame (ETF) is a type of optimal packing of lines in a real or complex Hilbert space. In the complex case, the existence of an ETF of a given size remains an open problem in many cases. In this paper, we observe that many of the known constructions of ETFs are of one of two types. We further provide a new method for combining a given ETF of one of these two types with an appropriate group divisible design (GDD) in order to produce a larger ETF of the same type. By applying this method to known families of ETFs and GDDs, we obtain several new infinite families of ETFs. The real instances of these ETFs correspond to several new infinite families of strongly regular graphs. Our approach was inspired by a seminal paper of Davis and Jedwab which both unified and generalized McFarland and Spence difference sets. We provide combinatorial analogs of their algebraic results, unifying Steiner ETFs with hyperoval ETFs and Tremain ETFs
    • …
    corecore